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Abstract In this paper, we consider vector variational inequality and vector F-comple-
mentarity problems in the setting of topological vector spaces. We extend the concept of upper
sign continuity for vector-valued functions and provide some existence results for solutions
of vector variational inequalities and vector F-complementarity problems. Moreover, the
nonemptyness and compactness of solution sets of these problems are investigated under
suitable assumptions. We use a version of Fan-KKM theorem and Dobrowolski’s fixed point
theorem to establish our results. The results of this paper generalize and improve several
results recently appeared in the literature.
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1 Introduction

The theory of vector variational inequalities has been extensively studied in the last two
decades because of its applications to vector optimization problems, vector complementarity
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problems, game theory, economics, etc; See, for example, [6,7,11,12] and references therein.
In the recent past, different kinds of monotonicities were introduced to study various kinds
of (vector) variational inequalities and (vector) complementarity problems. For details, we
refer to [2,5,8–10,14] and references therein. Chen [2] introduced the concept of semimonot-
onicity by combining the compactness and monotonicity, and studied the so-called semi-
monotone scalar variational inequality in the setting of Banach spaces. Recently, Fang and
Huang [5,10] considered a more general vector variational inequality problem and extended
the semimonotone scalar variational inequality to the vector case. They studied the existence
of solutions of such problem with applications to vector complementarity problems.

Let X and Y be two topological vector spaces, K a nonempty convex subset of X , C :
K → 2Y a set-valued mapping with proper solid convex cone values, and F : K → Y a
mapping, where 2Y denotes the family of all subsets of Y . We denote by L(X, Y ) the space
of all continuous linear operators from X into Y and by 〈s, x〉 the evaluation of s ∈ L(X, Y )

at x ∈ X . Let T : K → L(X, Y ) be a given mapping. We consider the following Stampac-
chia-type vector variational inequality problem (in short, SVVIP): find x̄ ∈ K such that

〈T (x̄), y − x̄〉 + F(y) − F(x̄) /∈ −intC(x̄), ∀y ∈ K ,

where intC(x) denotes the interior of C(x). The set of solutions of SVVIP is denoted by SS .
Another problem which is closely related to SVVIP is the following Minty-type vector

variational inequality problem (in short, MVVIP): find x̄ ∈ K such that

〈T (y), y − x̄〉 + F(y) − F(x̄) /∈ −intC(x̄), ∀y ∈ K .

We denote the set of solutions of MVVIP by SM . These two problems have been considered
and studied by Fang and Huang [5,10] for a fixed cone. They provided the existence of
solutions of these problems under different kinds of pseudomonotonicities and hemiconti-
nuity. They have also provided applications of these problems to vector F-complementarity
problems.

We also considered the following more general Stampacchia-type vector variational
inequality problem (in short, GSVVIP): find x̄ ∈ K such that

〈A(x̄, x̄), y − x̄〉 + F(y) − F(x̄) /∈ −intC(x̄), ∀y ∈ K ,

where A : K × K → L(X, Y ) is a mapping. Fang and Huang [5] considered this prob-
lem for a fixed cone and proved the existence of its solution under demipseudomonoto-
nicity and hemicontinuity assumptions in the setting of reflexive Banach spaces. We note
that the scalar version of the above mentioned problem was first considered and studied by
Chen [2]. He established the existence of solutions of his problem under semi-monotonicity.
As an application, Fang and Huang [5] proved the existence of solutions of the following
vector F-complementarity problem: find x̄ ∈ K such that

〈A(x̄, x̄), x̄〉 + F(x̄) /∈ intP and 〈A(x̄, x̄), y〉 + F(y) /∈ −intP, ∀y ∈ K ,

where A : K × K → L(X, Y ) and P is a proper solid convex cone in Y .
In this paper, we also consider the following more general vector F-complementarity

problem (in short, GVCP): find x̄ ∈ K such that

〈A(x̄, x̄), x̄〉 + F(x̄) /∈ intC(x̄) and 〈A(x̄, x̄), y〉 + F(y) /∈ −intC(x̄), ∀y ∈ K .

In the next section, we introduce the concept of Cx -upper sign continuity which extend the
previous concept of upper sign continuity introduced by Hadjisavvas [8]. We also recall some
known definitions and results which will be used in the sequel. In Sect. 3, we establish the
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nonemptyness of the solution set of SVVIP under Cx -upper sign continuity with or without
pseudomonotonicity assumptions. The last section deals with the existence of solutions of
GSVVIP and GVCP under Cx -upper sign continuity in the setting of metrizable topological
vector spaces but without demipseudomonotonicity assumption. We use the Dobrowolski’s
fixed point theorem and a version of the Fan-KKM theorem to extend and improve some
results of Fang and Huang [5].

2 Preliminaries

Let X and Y be two topological vector spaces, K a nonempty convex subset of X and
C : K → 2Y a set-valued mapping such that for all x ∈ K , C(x) is a proper closed convex
cone with intC(x) �= ∅. Let F : K → Y be a mapping.

Recall, a mapping T : K → L(X, Y ) is said to be hemicontinuous if, for any fixed
x, y ∈ K , the mapping t �→ 〈T (x + t (y − x)), y − x〉 is continuous at 0+.

Definition 1 Let x ∈ K be any arbitrary element. The mapping T : K → L(X, Y ) is said
to be Cx -upper sign continuous with respect to F if, for all y ∈ K and t ∈ ]0, 1[,

〈T (x + t (y − x)), y − x〉 + F(y) − F(x) /∈ −intC(x), ∀t ∈ ]0, 1[
⇒ 〈T (x), y − x〉 + F(y) − F(x) /∈ −intC(x).

Remark 1 It is easy to see that the hemicontinuity of T implies Cx -upper sign continuity of
T with respect to F . If X = Y = R , K = C(x) = [0,∞) and F ≡ 0, then any positive
mapping T : K → L(X, Y ) ≡ R is Cx -upper sign continuous while it is not hemicontinu-
ous. In this case, the concept of Cx -upper sign continuity reduces to upper sign continuity
introduced by Hadjisavvas [8].

Fang and Huang [5] defined the pseudomonotonicity of T : K → L(X, Y ) with respect
to F in the following manner: For any given x, y ∈ K ,

〈T (x), y − x〉 + F(y) − F(x) /∈ −intP ⇒ 〈T (y), y − x〉 + F(y) − F(x) ∈ P, (2.1)

where P is a pointed solid closed convex cone in Y .
We point out that this definition of pseudomonotonicity is too strong. If P = R

n+, then
condition (2.1) says that if one coordinate of 〈T (x), y − x〉 + F(y) − F(x) is nonnega-
tive, then all coordinates of 〈T (y), y − x〉 + F(y) − F(x) are nonnegative. If we replace
〈T (y), y − x〉 + F(y) − F(x) ∈ P by 〈T (y), y − x〉 + F(y) − F(x) /∈ −intP in (2.1), then
condition (2.1) would say that if one coordinate of 〈T (y), y − x〉 + F(y) − F(x) is nonneg-
ative implies at least one coordinate of 〈T (y), y − x〉 + F(y) − F(x) is also nonnegative.
Therefore, we adopt the following definition of pseudomonotonicity of T with respect to F .

Definition 2 Let x ∈ K be any arbitrary element. A mapping T : K → L(X, Y ) is said to
be Cx -pseudomonotone with respect to F if, for all y ∈ K ,

〈T (x), y − x〉+ F(y)− F(x) �∈ − intC(x)⇒ 〈T (y), y − x〉+ F(y)− F(x) �∈ − intC(x).

The following example shows that our definition of Cx -pseudomonotonicity w.r.t. F is
more general than the one used by Fang and Huang [5,10].

Example 1 Let X = K = R, Y = R
2 and P = {(x, y) ∈ R

2 : x ≥ 0, y ≥ 0} be a fixed
closed convex cone in Y . Let us define T (x)(t) = 〈T (x), t〉 = t (x, x2) and F(x) = 0. Then,
obviously, T (x) ∈ L(X, Y ).
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If we take y < x , x < 0, then 〈T (x), y−x〉 = (y−x)(x, x2) /∈ −intP since (y−x)x > 0
and 〈T (y), y − x〉 = (y − x)(y, y2) /∈ P because (y − x)y2 < 0 and so T is not pseudo-
monotone mapping in the sense of Huang and Fang [10]. While, if 〈T (y), y − x〉 ∈ −intP
then (x − y)(y, y2) ∈ intP . Thus x − y > 0 and y > 0 which imply that 〈T (x), x − y〉 =
(x − y)(x, x2) ∈ intP and so 〈T (x), y − x〉 ∈ −intP . This shows that T is P-pseudomono-
tone with respect to F in our sense.

Rest of the paper, unless otherwise specified, P = ⋂
x∈K C(x) is a fixed proper solid

convex cone in Y .

Definition 3 A mapping F : K → Y is said to be P-convex if,

F(x) + t (F(y) − F(x)) − F(x + t (y − x)) ∈ P, ∀t ∈ [0, 1], ∀x, y ∈ K .

It is easy to see that if F is P-convex then for all xi ∈ K , ti ∈]0, 1[ for all i = 1, 2, . . . , n
with

∑n
i=1 ti = 1, we have

∑n
i=1 ti F(xi ) − F

(∑n
i=1 ti xi

) ∈ P .

Definition 4 Let X and Y be two topological spaces. A set-valued mapping T : X → 2Y is
called:

(i) upper semi-continuous at x ∈ X if, for each open set V containing T (x), there is an
open set U containing x such that for all t ∈ U , T (t) ⊂ V ;
T is said to be upper semi-continuous on X if, it is upper semi-continuous at every
point x ∈ X ;

(ii) closed if, the graph Gr (T ) = {(x, y) ∈ X × Y : x ∈ X, y ∈ T (x)} of T is a closed
set;

(iii) compact if, the closure of range T , that is, clT (X) is compact, where T (X) = ⋃
x∈X

T (x).

Proposition 1 [1] Let X and Y be two topological spaces. If T : X → 2Y is closed and
compact, then it is upper semi-continuous on X.

Definition 5 [15] Let K be a nonempty subset of a topological space X . A set-valued map-
ping � : K → 2K is said to be transfer closed-valued on K if, for all x ∈ K , y /∈ �(x)

implies that there exists a point x ′ ∈ K such that y /∈ clK �(x ′), where clK �(x) denotes the
closure of �(x) in K .

It is well known that � is transfer closed-valued if and only if
⋂

x∈K clK �(x) =⋂
x∈K �(x).

Definition 6 Let K0 be a nonempty subset of K . A set-valued mapping � : K0 → 2K is said
to be a KKM map if, coA ⊆ ⋃

x∈A �(x) for very finite subset A of K0, where co denotes
the convex hull.

Lemma 1 [4] Let K be a nonempty subset of a topological vector space X and � : K → 2X

be a KKM mapping with closed values. Assume that there exist a nonempty compact convex
subset D ⊆ K such that B = ⋂

x∈D �(x) is compact. Then
⋂

x∈K �(x) �= ∅.

Theorem 1 [3,13] Let K be a convex subset of a metrizable topological vector space X
and F : K → 2K be a compact upper semi-continuous set-valued mapping with nonempty
closed convex values. Then F has a fixed point in K .
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3 Existence of solutions of SVVIP

Throughout this section, unless otherwise specified, X and Y are topological vector spaces,
K is a nonempty convex subset of X and C : K → 2Y is a set-valued mapping such that for
all x ∈ K , C(x) is a solid proper closed convex cone.

In order to present our existence results for a solution of SVVIP, we establish the following
lemma.

Lemma 2 Let F : K → Y be a P-convex mapping and T : K → L(X, Y ) be Cx -upper
sign continuous and Cx -pseudomonotone with respect to F. Then, the solution sets of MVVIP
and SVVIP are equal.

Proof By Cx -pseudomonotonicity of T with respect to F , every solution of SVVIP is a
solution of MVVIP.

Conversely, let x̄ be a solution of MVVIP. Then, for any given y ∈ K and t ∈ ]0, 1[ and
by letting yt = x̄ + t (y − x̄), we have

t〈T (yt ), y − x̄〉 + F(yt ) − F(x̄) �∈ −intC(x̄). (1)

The P-convexity of F implies that

F(x̄) + t (F(y) − F(x̄)) − F(yt ) ∈ P ⊆ C(x̄), ∀t ∈ [0, 1]. (2)

By using (1) and (2), we get

t (〈T (yt ), y − x̄〉 + F(y) − F(x̄)) �∈ −intC(x̄), ∀t ∈ ]0, 1].
Since Y \(−intC(x̄)) is a cone, we obtain

〈T (yt ), y − x̄〉 + F(y) − F(x̄) �∈ −intC(x̄),

and thus the result follows from the Cx -upper sign continuity of T with respect to F . ��
Remark 2 Lemma 2 can be viewed as a generalization of Minty lemma for vector varia-
tional inequalities but under Cx -upper sign continuity. In fact, Lemma 2 can be viewed as an
improvement of Lemma 2.3 in [5] as we have assumed Cx -upper sign continuity instead of
hemicontinuity and considered moving cone instead of a fixed cone.

We now establish an existence result for a solution of SVVIP under Cx -upper sign conti-
nuity.

Theorem 2 Let F : K → Y be a P-convex mapping and for all x ∈ K , let T : K →
L(X, Y ) be Cx -pseudomonotone and Cx -upper sign continuous with respect to F. Assume
that that the following conditions hold.

(i) The set-valued mapping y �→ {x ∈ K : 〈T (y), y − x〉 + F(y) − F(x) /∈ −intC(x)} is
transfer closed-valued on K .

(ii) There exist compact subset B ⊆ K and compact convex subset D ⊆ K such that
∀x ∈ K\B, ∃y ∈ D such that 〈T (y), y − x〉 + F(y) − F(x) ∈ −intC(x).

Then the solution set SS of SVVIP is nonempty and compact.

Proof For all y ∈ K , define a set-valued mapping � : K → 2K as

�(y) = {x ∈ K : 〈T (y), y − x〉 + F(y) − F(x) �∈ −intC(x)}.
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We claim that � is a KKM map. Otherwise, there exist y1, . . . , yn ∈ K and z ∈ co({y1, . . . ,

yn}) such that z �∈ ⋃n
i=1 �(yi ). Then,

〈T (yi ), yi − z〉 + F(yi ) − F(z) ∈ −intC(z), for all i = 1, 2, . . . , n.

Since T is Cx -pseudomonotone with respect to F , we have

〈T (z), yi − z〉 + F(yi ) − F(z) ∈ −intC(z) for all i = 1, 2, . . . , n. (3)

For each i = 1, 2, . . . , n, let ti ∈]0, 1[ with
∑n

i=1 ti = 1. Multiplying relation (3) by ti and
summing, we obtain

n∑

i=1

ti 〈T (z), yi − z〉 +
n∑

i=1

ti F(yi ) −
n∑

i=1

ti F(z) ∈ −intC(z).

By P-convexity of F , we obtain
〈

T (z),
n∑

i=1

ti yi − z

〉

+ F

(
n∑

i=1

ti yi

)

− F(z) ∈ −intC(z),

and thus 0 = 〈T (z), z − z〉 + F(z) − F(z) ∈ −intC(z) which contradicts to our assumption
that C(z) �= Y .

By condition (ii), clK

(⋂
y∈D �(y)

)
⊆ B. Consequently, set-valued mapping cl�:K → 2K

satisfies all the conditions of Lemma 1 and so
⋂

x∈K �(x) is nonempty. By condition (i), we
get SS = ⋂

x∈K cl�(x) = ⋂
x∈K �(x) which implies that the solution set SM of MVVIP

is nonempty. Moreover, since T is Cx -upper sign continuous with respect to F and F is
P-convex, by using Lemma 2, we get

SS =
⋂

y∈K

�(y) =
⋂

y∈K

{x ∈ K : 〈T (x), y − x〉 + F(y) − F(x) �∈ −intC(x)}.

This and conditions (i) and (ii) imply that the solution set of SVVIP is a nonempty and
compact subset of B. ��
Example 2 Let X = R, K = [0, 1], Y = R

2 and C(x) = P = {(u, v) ∈ R
2 : u ≥ 0, v ≥ 0}

for all x ∈ K , be a fixed closed convex cone in Y . Let us define T (x)(t) = 〈T (x), t〉 =
t (x, x2) and F(x) = 0 for all x ∈ K and t ∈ X. Then, F is P-convex and T is Cx -pseudo-
monotone and Cx -upper sign continuous with respect to F and

〈T (x), y − x〉 + F(y) − F(x) = (y − x)(x, x2) = ((y − x)x, (y − x)x2).

It is easy to see that the set {x ∈ K : 〈T (y), y − x〉 /∈ −intC(x)} = [0, y] is closed and
so the mapping y �→ {x ∈ K : 〈T (y), y − x〉 /∈ −intC(x)} is transfer closed valued on K .

Since K is compact, condition (ii) of Theorem 2 trivially holds. Therefore, T satisfies all the
assumptions of Theorem 2 and so the solution set of SVVIP is nonempty and compact. It is
clear that only x = 0 satisfies the following relation

〈T (x), y − x〉 + F(y) − F(x) �∈ −intC(x), ∀y ∈ K .

Similarly, only x = 0 satisfies the following relation

〈T (y), y − x〉 + F(y) − F(x) �∈ −intC(x), ∀y ∈ K .

Hence the solution sets of SVVIP and MVVIP are equal to the singleton set {0}.
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Remark 3

(a) If X is a real reflexive Banach space and K is a nonempty bounded closed convex subset
of X , then K is weak∗ compact. In this case, condition (ii) of Theorem 2 can be removed.

(b) It is obvious that if F is continuous and the set-valued map W (x) = Y \(−intC(x)) for
all x ∈ K , is closed, then condition (i) of Theorem 2 trivially holds.

(c) Theorem 2 can be seen as an improvement of Theorem 2.1 in [5] as we have assumed
Cx -upper sign continuity instead of hemicontinuity and we also used coercivity condition
(ii) instead of boundedness of K .

Now we prove the existence of a solution of SVVIP without any kind of pseudomonoto-
nicity assumption.

Theorem 3 Let K , X, Y and C be the same as in Theorem 2 and F : K → Y be a map.
Assume that the set-valued mapping T : K → 2K satisfies the following conditions.

(i) For all y ∈ K , the set {x ∈ K : 〈T (x), y − x〉 + F(y) − F(x) �∈ −intC(x)} is convex.
(ii) The set-valued mapping y �→ {x ∈ K : 〈T (x), y − x〉 + F(y) − F(x) �∈ −intC(x)} is

transfer closed-valued on K .
(iii) There exist compact subset B ⊆ K and compact convex subset D ⊆ K such that

∀x ∈ K\B, ∃y ∈ D such that 〈T (x), y − x〉 + F(y) − F(x) ∈ −intC(x).

Then the solution set SS of SVVIP is nonempty and compact.

Proof For all y ∈ K , define � : K → 2K as

�(y) = {x ∈ K : 〈T (x), y − x〉 + F(y) − F(x) �∈ −intC(x)}.
By the same argument as in the proof of Theorem 2, it is easy to see that clK � satisfies all
the conditions of Lemma 1, hence

⋂
x∈K clK �(x) �= ∅. Since SS = ⋂

x∈K �(x), condition
(ii) implies that SS is nonempty and again by conditions (ii) and (iii), SS is compact. ��
Remark 4 Condition (ii) of Theorem 3 holds when F is continuous and the mapping W (x) =
Y \(−intC(x)) is closed.

Example 3 Let X = Y = R, K = [0, 1], F(x) = x , C(x) = [0,∞) for all x ∈ K . We
define T : K → L(X, Y ) = R by

T (x) =
{

1, if x is rational
0, if x is irrational.

It is easy to see that T is Cx -upper sign continuity with respect to F (note that T is a
non-negative mapping and F is continuous) while T is not upper semicontinuous (if x is
an irrational number and {xn} is a sequence of rational numbers in [0, 1], then the relation
lim sup T (xn) ≤ T (x) does not hold). For all y ∈ K , we have

{x ∈ [0, 1] : 〈T (x), y − x〉 + F(y) − F(x) �∈ −intC(x)} = [0, y]
which is closed and convex. Then T satisfies all the conditions of Theorem 3 and so the
solution set of SVVIP is nonempty and compact.

We claim that the solution set of SVVIP is the singleton set {0}. If x is a rational number
belongs to [0,1] and a solution, then the following relation does not hold

〈T x, y − x〉 + F(y) − F(x) = F(y) − F(x) = y − x �∈ −intC(x), ∀y ∈ K = [0, 1].
Similarly, if x ∈ (0, 1] is a rational number then the previous relation also does not hold.
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Finally, if x = 0 then 〈T x, y − x〉 + F(y) − F(x) = F(y) − F(x) = 2y �∈ −intC(x) for
all y ∈ K = [0, 1] holds. Similarly, we can easily see that the solution set of MVVIP is the
singleton set {0}.

4 Existence of solutions of GSVVI

Now we establish the following existence result for a solution of GSVVI under Cx -pseudomo-
notonicity and Cx -upper sign continuity but without demipseudomonotonicity assumption.
This theorem generalizes and improves Theorem 3.1 in [5].

Theorem 4 Let K be a nonempty closed convex subset of a metrizable topological vector
space X and C : K → 2Y be a set-valued mapping such that for all x ∈ K , C(x) is a
proper solid convex cone. Let F : K → Y be a P-convex and continuous mapping and
W : K → 2Y be a closed set-valued mapping defined as W (x) = Y \(−intC(x)) for all
x ∈ K such that tW (x) + (1 − t)W (y) ⊆ W (t x + (1 − t)y) for all x, y ∈ K and t ∈ [0, 1].
Let A : K × K → L(X, Y ) be a mapping. Assume that the following conditions hold:

(i) For all z ∈ K , the mapping A(·, z) : K → L(X, Y ) is finite-dimensional continuous,
that is, for any finite dimensional subspace M ⊆ X, A(·, z) : K ∩ M → L(X, Y ) is
continuous;

(ii) A is Cx -pseudomonotone and Cx -upper sign continuous in the second argument;
(iii) For each finite dimensional subspace M of X with KM = K ∩ M �= ∅, there exist

compact subset BM ⊆ KM and compact convex subset DM ⊆ KM such that ∀(x, z) ∈
KM × (KM\BM ), ∃y ∈ DM such that 〈A(x, z), y − z〉 + F(y) − F(z) ∈ −intC(z).

Then GSVVIP has a solution.

Proof Let M ⊂ X be a finite dimensional subspace with KM = K ∩ M �= ∅. For each fixed
w ∈ K , consider the problem of finding ū ∈ KM such that

〈A(w, ū), v − ū〉 + F(v) − F(ū) �∈ −intC(ū), ∀v ∈ KM . (4)

By Theorem 2, the problem (4) has a nonempty compact solution set.
For all w ∈ M , define a set-valued mapping T : KM → 2KM as

T (w) = {u ∈ KM : 〈A(w, u), v − u〉 + F(v) − F(u) �∈ −intC(u), ∀v ∈ KM }.
Then T (w) is a nonempty closed subset of BM , in fact, T (w) is the solution set of (4)
corresponding to w. By Lemma 2, we have

T (w) = {u ∈ KM : 〈A(w, v), v − u〉 + F(v) − F(u) �∈ −intC(u), ∀v ∈ KM }
which is a convex set.

Indeed, let ui ∈ T (w) for i = 1, 2, then for all v ∈ KM

〈A(w, v), v − ui 〉 + F(v) − F(ui ) �∈ −intC(ui ), for i = 1, 2,

that is,

〈A(w, v), v − ui 〉 + F(v) − F(ui ) ∈ W (ui ), for i = 1, 2.

Multiplying this relation for i = 1 by t and for i = 2 by (1 − t), where t ∈]0, 1[ and then
summing them, we obtain

〈A(w, v), v − (tu1 + (1 − t)u2)〉 + F(v) − (t F(u1) + (1 − t)F(u2))

∈ tW (u1) + (1 − t)W (u2) ⊆ W (tu1 + (1 − t)u2) ,
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and therefore,

〈A(w, v), v − (tu1 + (1 − t)u2)〉 + F(v) − (t F(u1) + (1 − t)F(u2))

�∈ −intC (tu1 + (1 − t)u2) .

Since F is P-convex, we have

t F(u1) + (1 − t)F(u2) − F(ut ) ∈ P ⊆ C(ut ), where ut = tu1 + (1 − t)u2.

By combining last two relations, we get

〈A(w, v), v − ut 〉 + F(v) − F(ut ) �∈ −intC(ut )

and thus ut ∈ T (w).
Since for each v ∈ KM , the mapping A(·, v) : KM → L(X, Y ) and F are continuous and

W is closed, the graph of T

graph(T ) = {(w, u) ∈ KM × KM : 〈A(w, v), v − u〉 + F(v) − F(u)

�∈ −intC(u), ∀v ∈ KM }
is closed and therefore T is a closed map.

Since T (KM ) = ⋃
w∈KM

T (w) ⊆ BM , T is a compact map. Proposition 1 implies that T
is upper semicontinuous. Theorem 1 entails that T has a fixed point w̄ ∈ KM , that is,

〈A(w̄, w̄), v − w̄〉 + F(v) − F(w̄) �∈ −intC(w̄), ∀v ∈ KM . (5)

Set M = {M ⊂ X : M is a finite dimensional subspace with KM �= ∅} and for M ∈ M
WM = {u ∈ K : 〈A(u, v), v − u〉 + F(v) − F(u) �∈ −intC(u), ∀v ∈ KM }.

Since A(·, w) is continuous on KM , F is continuous on K and W is closed, we have WM is
closed. By (5), WM is a nonempty subset of a compact set BM . Therefore, WM is nonempty
and closed subset of a compact set BM and hence it is nonempty and compact.

For each finite subset {Mi }n
i=1 of M, from the definition of WM , we have W⋃

i Mi ⊂
⋂n

i=1 WMi , so {WM : M ∈ M} has the finite intersection property. Hence, there exists
u ∈ ⋂

M∈M WM .

We claim that

〈A(u, u), v − u〉 + F(v) − F(u) �∈ −intC(u), ∀v ∈ K .

Indeed, for each v ∈ K , let M ∈ M be such that v ∈ KM and u ∈ KM . Since WM is closed
and u ∈ WM , there exists a net {uα} ⊂ WM such that uα converges to u. By the definition of
WM , we have

〈A(uα, v), v − uα〉 + F(v) − F(uα) �∈ −intC(uα).

The continuity of A(·, w) and F and closedness of W imply that

〈A(u, v), v − u〉 + F(v) − F(u) �∈ −intC(u), ∀v ∈ K .

Hence by Lemma 2, we have

〈A(u, u), v − u〉 + F(v) − F(u) �∈ −intC(u), ∀v ∈ K .

As an application of Theorem 4, we derive the existence result for a solution of GVCP.
��
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Theorem 5 Let C, W , F and A be the same as in Theorem 4 and let K be a nonempty
closed convex cone in a metrizable topological vector space. Assume that all the conditions
of Theorem 4 hold such that F

( 1
2 x

) = 1
2 F(x) for all x ∈ K . Then GVCP has a solution.

Proof By Theorem 4, there exists x̄ ∈ K such that

〈A(x̄, x̄), y − x̄〉 + F(y) − F(x̄) �∈ −intC(x̄), ∀y ∈ K . (6)

Since F(0) = 1
2 F(0), we have F(0) − 1

2 F(0) = 0 and so F(0) = 0. Letting y = 0 in (6),
we obtain

〈A(x̄, x̄), x̄〉 + F(x̄) �∈ intC(x̄). (7)

Substituting y = x̄ + z into (6) for all z ∈ K , we deduce that

F(x̄) − 〈A(x̄, x̄), z〉 − F(x̄ + z) �∈ intC(x̄). (8)

Since F is P-convex mapping, by multiplying the relation

1

2
(F(x̄) + F(z)) − F

(
1

2
(x̄ + z)

)

∈ P ⊆ C(x̄)

by 2 and using F( 1
2 x̄) = 1

2 F(x̄) for all x ∈ K , we get

F(x̄) − F(x̄ + z) + F(z) ∈ C(x̄). (9)

By (8) and (9), we get

〈A(x̄, x̄), z〉 + F(z) �∈ −intC(x̄).

Because z was arbitrary element of K , we get the conclusion. ��

Remark 5 The condition F
( 1

2 x
) = 1

2 F(x) for all x ∈ K holds if F is positively homoge-
neous, that is, F(t x) = t F(x) for all t ≥ 0. Hence, Theorem 5 generalizes and improves
Theorem 3.2 in [5].

Finally, we give an example of a function F which satisfies the condition F
( 1

2 x
) = 1

2 F(x)

for all x ∈ K of Theorem 5 but not a positively homogeneous function and hence Theorem 3.2
in [5] can not be applied.

Example 4 Let F : R → R be defined as

F(x) =
{

x, if x is rational
0, if x is irrational.

Then F satisfies the condition F
( 1

2 x
) = 1

2 F(x) for all x ∈ R but it is not positively homo-
geneous.
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